Greener roads by talking traffic lights - Knowledge about queue length and next traffic light signalling

Claudia Dittrich, Jonas Lüßmann, Fritz Busch, Robert Mänz, Rainer Stahlmann, Cornelius Menig

Technische Universität München
Chair of Traffic Engineering and Control
&
Friedrich-Alexander-Universität Erlangen-Nürnberg
Department of Computer Science 7
&
Audi AG

25th February 2010
Introduction

- TRAVOLUTION - TRAVOLUTION extended
- Pilot region: Ingolstadt
- Vehicle to infrastructure communication
- Two main applications
 1. Urban traffic state estimation
 2. Green light optimal speed advisory
- Two aspects improving speed advisory
 1. Queue length estimation
 2. Signal change prediction
Introduction

TRAVOLUTION - TRAVOLUTION extended
Pilot region: Ingolstadt
Vehicle to infrastructure communication
Two main applications
 1. Urban traffic state estimation
 2. Green light optimal speed advisory
Two aspects improving speed advisory
 1. Queue length estimation
 2. Signal change prediction
Green Light Optimal Speed Advisory

- Developed by Audi within TRAVOLUTION
- Integrated in the dashboard of Audi prototypes
- Goal: Speed advisory to reach the next intersection during green.
- Countdown until the next green time
- Delay resulting from vehicles queued is not considered until now.
Queue length estimation: State of the art

- Methods based on inductive loop and/or vehicle data
- Estimate maximum queue length
- Application: Signal light control
 1. Mück’s patented method is based on the filling time of the inductive loop.
 2. Comert and Cetin’s statistical method is based on number and positions of communicating vehicles in the queue.
 3. Priemer and Friedrich’s method is based on positioning data of communicating vehicles in the queue.
Queue length estimation: State of the art

- Methods based on inductive loop and/or vehicle data
- Estimate maximum queue length
- Application: Signal light control
 1. Mück’s patented method is based on the filling time of the inductive loop.
 2. Comert and Cetin’s statistical method is based on number and positions of communicating vehicles in the queue.
 3. Priemer and Friedrich’s method is based on positioning data of communicating vehicles in the queue.
Intersection under consideration

- Proof of benefit of tailback information on the green light optimal speed advisory
Coordinated signal plans and queue length characteristic
Range of speed advisories

No reasonable speed advisory possible

- Maximum speed to reach stop line at green time beginning considering queue length
- Maximum speed to reach stop line at green time beginning
- Minimum speed to reach stop line at green time ending considering queue length
- Minimum speed to reach stop line at green time ending

Claudia Dittrich, Jonas Lüßmann, Fritz Busch, Robert Mänz, Rainer Stahlmann, Cornelius Menig
Difference of speed advisory
Integration of tailback information into the urban traffic state estimation

- Traffic state estimated by using taxi floating car data
- Integration method of queue length information
 1. Transformation of tailback length into velocity
 2. Data fusion of velocities
- More reliable result
- Efficient route choice possible
Data used so far:
- Exported values of the traffic light controller
- Knowledge of the chronological sequence of the signal changes
- Controller behaviour of the last program sequence

Disadvantage within:
- Fast changing traffic state
- Abrupt interactions: Prioritization of public transports
Enhanced signal change prediction

- Stochastic method
- Prediction with likelihood for green
- Use of historical information
- Traffic load curves
Conclusion

- Benefit of tailback information on the green light optimal speed advisory demonstrated
- Integration of tailback information into the traffic state estimation
- Ideas to improve the reliability of the green time prediction
- Enhancement in the optimal speed advisory improves the reduction of environmental pollution and inner city traffic.
Thank you!

Any questions?