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=» Sustainable mobility: motivation

=> Losses and emissions of road vehicles

=> Electric mobility: hype or future?

=» Hybrid propulsion: the best of two worlds?

> Measures to improve conventional powertrains
= Future powertrain scenarios

= Conclusions
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3 A source of greenhouse gas emissions
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4 Simulation for a sample vehicle

Auxiliary consumers

Rolling resistance
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ICE drag
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Source: HOhn, B.-R.; Michaelis, K.; Kurth, F.: Efficiency and Power
Flow Analyses for Manual and Double Clutch Transmissions. 1. . H
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FZ e Comparison of energy storage systems
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cles (BEVs)

Example: Mitsubishi i-MIEV / Peugeot iOn / Citroen C-Zero

= Electric motor Power:
Max. torque:

= Battery Usable capacity:
Voltage:
Mass:

Recharging time:

= Vehicle Max. speed:
Acceleration 0...100 km/h:
Crusing range:
Mass:
Consumption (B2W):
Price in Japan:

= Weight
= Fuel economy
= Cost
if it were designed for the same requirements?

=» What would an ICE-driven vehicle look like with respect to

47 kKW
180 Nm

16 kWh (Li-lon)

330V

~200 kg = ~80 Wh/kg
~6...7 h at household outlet

130 km/h

13 s

160 km in 10-15-Mode cycle
1080 kg

10 — 11 kWh/100 km

~34.000 € (-11.000 € subsidy)
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Simulation-based estimate of fuel/electric energy consumption in the
NEDC for a 1400 kg conventional (diesel) and a 1600 kg BEV
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9 Well-to-wheel comparison
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Greenhouse Gas Emissions [g/km] Source: WBCSD: The Sustainable
Mobility Project, Full Report 2004
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10 nuclear power and renewables (2004)
grammes of CO, per kWh
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12 Energy storage and other challenges

=» Today’s BEVs are not suitable as all-
purpose vehicles due to limited range.

=>» Market entry barriers for new suppliers

=>» Mainstream technologies yet to be
found:

= Safety issues
= Recharge and/or exchange?
= [nfrastructure, connectors
= NVH/acoustics
=» Solvable problems
=>» Battery costs are still too high

= ,Green customers” are only a
boundary phenomenon

= Tax benefits necessary

= New business models: Buy a car,
rent a battery?
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13 The best of two worlds?

0 Rotational speed
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14 Power flows and measures
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Controller

— 1 1 %

Fuel Electric
{ Tank P IC Engine " Generator [# Motor

/Generator
‘ Battery B

+ Free choice of IC engine - Large/heavy electric
operating point equipment
+ Full power available also - Increased losses due to

in electric mode double energy conversion
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A

<

Controller

A

+ Low complexity, can be derived
from existing driveline concepts

+ Small installed electric power
can already improve fuel
economy significantly

electric mode

- NVH problems caused by IC
engine start and shutdown

- Limited driving performance in
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17 Input power-split
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+ Simple transmission concept

- Permanent electric power flow
is necessary for speed
superposition
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18 Driveline concept

Ultracapacitors Electric motor

C=225F PM synchronous machine

U=26...52V
E = 220 kJ (usable)

iVi transmission

2-range CVT

IC engine Ratio spread 14.2
1.9 litre common-rail diesel Launch ratio 25.6

P =88 kW
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19 Dimensioning

NEDC fuel consumption [I/100 km]

Installed electric 40 ’

power [kW] ]
DLC Capacity [F]
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2 Fuel economy
5150 | %
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I Z The good old gearbox
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21 A fully developed drive component?
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Breaking down transmission losses

T. Draxl
2010-02-26 . )
- WTplus calculation for a sample vehicle
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Source: Hohn, B.-R.; Michaelis, K.; Kurth, F.: Efficiency and Power
Flow Analyses for Manual and Double Clutch Transmissions. 1.
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=» LowlLoss gears
=> Lower oil level
=> Baffle plates
=» Optimised arrangement of loose wheels
=» Dry instead of wet clutches
=» Efficiency-optimised bearings
=>» Low-viscosity lubricants

t ICE power input

:—I

But: ,basic charge” problem

=» Loss reduction after the ICE
does not reduce fuel
consumption by the same
percentage.

——s
50% reduction i

less than 50% reduction

0 ICE power output
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Load-dependent gear losses Load-independent gear losses
! !
Friction in the tooth contact Oil splashing/squeezing
(tooth geometry parameters, operating (oil properties, geometry,
conditions, oil properties) oil level, rotational speed)

Loss-optimised transmission design: reduce rotational speeds
by smart arrangement of loose wheels
- Reduction of load-independent losses

Minimum-friction ,LowLoss" gears in conjunction with lower oil level
- Reduction of load-dependent and load-independent losses




FZ G Reduction of load-dependent gear losses
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25 by LowlLoss design

Conventional gear LowLoss gear

Up to 70% loss reduction




I Z Optimised arrangement of loose gears
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26 6-speed manual transmission
—sme [ @ T |
2 + Il;l_: Layshaft 2
—— |J_-|E|j 3 I_jlf R
T p— = L1

For low rotational speed of loose wheels:
=» Loose wheels of high gears on input shaft and
vice versa

For low rotational speeds of bearings:
=» Loose wheels of gears with transmission ratios <1
on input shaft and vice versa

{)lde
drive

.~ Source: Héhn, B.-R.; Michaelis, K.; Kurth, F.: Efficiency
- % and Power Flow Analyses for Manual and Double Clutch
Transmissions. 1. Automobiltechnisches Kolloquium,
Garching, April 16 — 17, 2009
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Loss reduction through lower oil level
Influence of the oil level on gear temperature
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28 LowLoss gears and lower oil level
50
9
€ 40
9 o
© 20 Nm |
§ 70 Nm
; 120 Nm |
8 30 170 Nm__
- v 220 Nm
Mid-size sample vehicle (manual transmission) -~ 2/0Nm |
+ 1420 kg mass = 320 Nm
* 110 kW ‘
* 4-cylinder diesel 6000 7000
* NEDC: 5.8 litres/100 km, 153 g/km CO,, savings up to 3 g/km
« CADC: 6.3 litres/100 km, 168 g/lkm CO,, savings up to 3.5 g/km
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Western Europe

[ ICE (None + Mirco)
2 mild

B Ful

B PHEV (serial)

] PHEV (parallel)

CJEev

] ICE (None + Mirco)
B mild

B Fu

B PHEV (serial)

] PHEV (parallel)

[ JEev

© Roland Berger Strategy Consultants 2010

McKinsey&Company
scenario for 2030
8% EVs
24% EVs
28% PHEVs
40% ICE/Micro hybrids

=> -22% CO, compared
to 2009

=> -49% CO, compared
to ,no measures at all”

=» Emission benefit for
BEVs from 2017 on

Little agreement about
the role of hydrogen in
future car applications
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=» Purely Electric propulsion with present/near-future
technology seems suitable only for cities.

=» Hybrids might be a viable alternative for some applications
and markets.

=» Conventional powertrains must be further improved.

=» Different solutions for different markets (customers,
infrastructure, energy mix etc.) may be necessary despite
Increased costs.

=» Engineers can shape the future, but environmental and
financial policy have a strong influence.

=» Sustainability does not necessarily mean renouncement,
but can also mean superior, highly efficient solutions.

=» Revolutions can come unexpectedly.




